Abstract
The purpose of this research is to evaluate the effectiveness of introducing fractal pattern modeling in plants using Python for the development of geometric skills in children aged 4-7 years. Many educational programs do not integrate enough tangible and visual activities to help children understand abstract geometric concepts. This can result in a lack of interest and understanding, as children learn best through concrete experiences. Furthermore, the lack of adequate resources and tools in classrooms can limit opportunities to explore geometry interactively, negatively affecting the development of essential spatial and geometric skills. This research was experimental methodology. Children's progress in understanding shapes, dimensions and spatial relationships was measured through a more experiential and practical approach in the classroom. A higher level of participation and interest of children in geometric learning was observed through more dynamic and playful methods. The impact on the development of spatial skills, such as visualization ability and geometric problem solving, was evaluated. It was concluded that children improved their ability to identify geometric figures when exposed to fractal patterns of plants modeled using Python.
References
Barberán, K., Quimi, P. & Andina, M. (2019). Factores familiares y escolares que influyen en los problemas de conducta y aprendizaje de los niños. Academo Revista de investigación en Ciencias Sociales y Humanidades, 6(2), 124-134.
http://scielo.iics.una.py/pdf/academo/v6n 2/2414-8938-academo-6-02-124.pdf
Cangas, D., Morga, G. & Rodríguez, J. L. (2019). Geometric teaching experience with NeoTrie VR. Journal Psychology, Society, & Education, 11(3), 355-366. Obtenido de
http://ojs.ual.es/ojs/index.php/psye/article/ view/2270
Chavil, D., Romero, I. & Rodríguez, J. (julio-diciembre de 2020). Introducción al concepto de fractal en enseñanza secundaria usando realidad virtual inmersiva. Revista Desde el Sur, 12(2), 615-629. Obtenido de
http://www.scielo.org.pe/pdf/des/v12n2/2 415-0959-des-12-02-615.pdf;
http://dx.doi.org/10.21142/des-1202- 2020-0034
Mandelbrot, B. (1982). The fractal geometry of nature. New York: Updated and augm. (Pág. 506). https://archive.org/details/fractalgeometry o00beno
Sepulcre, J. M. (2020). Geometría fractal: la geometría de la naturaleza. SUMA. Revista sobre la enseñanza y el aprendizaje de las matemáticas (95), 17-25. https://revistasuma.es/wp-content/uploads/suma/Suma95/S95w_01 7-025.pdf
Guzmán, A, Ceballos, G (2022). Articular la Enseñanza de la Geometría Con el Arte a Partir de “Fractales en la Naturaleza” Como Estrategia Para El Fortalecimiento de Las Competencias Básicas en Estudiantes de Grado Quinto. Universidad de Santander Facultad de Ciencias Sociales Maestría en Tecnologías Aplicadas a la Educación Quimbaya, Quindío. https://www.canva.com/design/DAFltl pN7bU/2of0ELdqfKrPOR_N2sL0Aw/ edit
Cecilia, E. (2023). Kirigami, ESTRUCTURAS GEOMÉTRICAS FRACTALES Y ONDAS DE LUZ.
Universidad de Carabobo, UC. 1.C. Sandoval- RuizKirigamiluzyGeometraenArquitec tura.pdf
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Abraham Lincon Minaya Ticona, Carlos Eduardo Torres Castro, Dasha Ayelen Melgarejo Paulino, Atilio Rodolfo Buendía Giribaldi, Rafael Edgardo Carlos Reyes